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Abstract. An electron teleportation protocol, inspired by the scenario by Bennett et al., is proposed in a
mesoscopic set-up. A superconducting circuit allows to both inject and measure entangled singlet electron
pairs in an array of three normal quantum dots. The selection of the teleportation process is achieved
in the steady state with the help of two superconducting dots and appropriate gating. Teleportation of
the electron spin is detected by measuring the spin-polarized current through the normal dot array. This
current is perfectly correlated to the pair current flowing inside the superconducting circuit. The classical
channel required by Bennett’s protocol, which signals the completion of a teleportation cycle, is identified
with the detection of an electron pair charge in the superconducting circuit.

PACS. 74.50.+r Tunneling phenomena; point contacts, weak links, Josephson effects – 73.23.Hk Coulomb
blockade; single-electron tunneling – 03.65.Ud Entanglement and quantum nonlocality (e.g. EPR paradox,
Bell’s inequalities, GHZ states, etc.)

Teleportation (TP) recently entered the realm of quan-
tum physics when Bennett et al. [1] proposed a protocol
to reconstruct the unknown state of a given particle at
a different location. The sender, Alice, and the receiver,
Bob, share an entangled pair [2] – , and Alice performs a
joint measurement on the “source” particle and her part of
the pair. The result of the measurement is communicated
through a classical channel to Bob, allowing him to recon-
struct the initial state on his part of the pair. This protocol
has since been experimentally demonstrated with polar-
ized photons [3], as well as proposed in atomic physics [4]
and solid state optics [5]. TP is likely to become an essen-
tial element of future information processing schemes [6].
It is certainly relevant to test these manifestations of non-
locality [7] with massive particles in nanostructured de-
vices, with the advantage that these can be integrated in
(quantum) electronic circuitry. Similar analogies between
photon propagation and phase-coherent electron transport
in nanostructures were illustrated by the fermion version
of the Hanbury-Brown and Twiss experiment [8].

The general principle of the present mesoscopic scheme
for TP – an array of quantum dots with superconduc-
tors – is inspired of reference [1], but follows more closely
its optical implementation [3]. Alice’s measuring device
for entangled (singlet) electron pairs is an s-wave super-
conductor, as is the generator of the entangled electron
pairs [9–12]. Similarly to the the optics experiment only
one of the four Bell states is measured (Fig. 1a).
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Fig. 1. a) The Bell state projection which operates on dots
1, 2, 3: |σ > is the spin to be teleported, the singlet is depicted
in gray. b) The TP cell contains: i) NN junctions between reser-
voirs L, R and dots 1 and 3; ii) N-S junctions between (1,a),
(a,2), (2,b) and (b,3), and S-S junctions between a (b) and
the bulk superconductor S . Detectors DL,R,S signal the pas-
sage of an electron/Cooper pair in the normal/superconducting
circuit. c) Energy level configuration of dots 1, 2 and 3 (µS is
the superconductor chemical potential).

However photons do not interact together in vacuum.
On the contrary, electrons in nanostructures experience
strong Coulomb interactions, which can be used to ensure
that electrons be injected one by one from/to a quantum
dot through tunnel barriers [13]. Indeed, further control
can be obtained in a multidot array, by means of intradot
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and interdot Coulomb correlations: here, the correct TP
sequence (injection, pair creation, measurement, classical
channel and detection) can be precisely selected, while
operating in the steady state, by an appropriate initial
choice of gate voltages.

The device is depicted in Figure 1b: three normal (N)
dots, 1, 2 and 3, and two superconducting (S) dots a, b,
are placed in alternation: N-dots can only communicate
via the S-dots. Dots 1 and 2 are coupled to dot a – Alice’s
measuring device – by tunnel junctions, while 2 and 3 are
coupled to b – the source of entangled pairs. Furthermore,
dots a,b are connected by tunnel junctions to a supercon-
ducting (S) circuit where Cooper pairs only are transfered.
Reservoir L emits in dot 1 the electron to be teleported,
and reservoir R (“Bob”) collects the teleported state from
dot 3.

First, focus on the isolated system of 5 dots.
An entangled singlet pair of particles |ΨS〉23 =
2−1/2(| ↑↓〉23 − | ↓↑〉23) is produced by b. Coulomb block-
ade [13] prohibits double occupancy in each dot [9,10]
(the same is true for Cooper pair occupancy in the su-
perconducting dots). Bringing together the singlet |ΨS〉23
with the state |σ〉1 to be teleported, the resulting state
with dots 1,2,3 occupied leaves the spin in 3 undeter-
mined. This three-particle wave function is now decom-
posed among the 4 Bell states for electron spins in dots
(1, 2) [1]: |Ψ〉123 = −(1/2)[|ΨS〉12|σ〉3 +

∑
ν |ΨTν 〉12|σ̃ν〉3]

where |σ̃ν〉 are unitary transforms of |σ〉 (ν = 0,±) and
|ΨT0+−〉12 the three triplet states. a acts as a detector for
the singlet state of electrons in 1 and 2 (Fig. 1a): absorp-
tion of a Cooper pair only occurs if (1,2) contain a singlet.
The remaining spin in dot 3 necessarily acquires the same
state |σ〉 as the initial spin in dot 1. The absorption of the
singlet electron pair from (1, 2) also erases the initial spin
state from dot 1. It becomes part of a Cooper pair which
is absorbed by the superconductor a. This pair in a does
not bear any memory of the initial spin state in 1, and
the “non-cloning theorem” [14] is thus satisfied. As in [1],
this transition is made irreversible: here it is followed by
the (irreversible) injection of a “new” electron from L.

A microscopic Hamiltonian supports this TP protocol.
N-dots are assumed to have a discrete spectrum, with level
spacing comparable to the gaps ∆a,b,S ∼ ∆ of the S-dots
and S-circuit. The S-dots have a continuous quasiparticle
spectrum, and ∆a,b > ECµ ≡ e2/CΣµ . Only two occupa-
tion numbers are kept for each dot. N-dots (S-dots) have
“empty” states with an even number N0

µ of electrons, and
have “filled” states with N0

µ + 1 (N0
µ + 2) electrons. The

Hamiltonian which describes the TP cell reads H = H0 +
Ht + HC where H0 describes the isolated elements (dots
and reservoirs). The single electron hopping term Ht has
amplitudes tαβ (α, β = {L,R,S,1,2,3,a,b}). Only one
level is relevant in each N-dot, and next nearest neighbor
hoppings are neglected. The Coulomb contribution has
the standard form: HC = (1/2)

∑
µ,ν=1,2,3,a,b UµνδNµδNν ,

where δNµ = Nµ − N̄µ is the deviation from the effective
number of electrons imposed by the gates (voltage VGµ).
The coefficients Uµν form the inverse capacitance matrix
of this five dot system, and are computed [15] from the
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Fig. 2. TP sequence: upper dots (white) are S-dots a and b,
lower dots (shaded) are N-dots 1, 2, 3. Horizontal transitions
only are resonant. Starting from the framed configuration (up-
per right), an electron in 3 escapes in R; next, a pair (from
b) creates an entangled state 2,3 (wiggly line) with rate AP ,
leaving all N-dots filled. A pair 1, 2 then escapes in a. The elec-
tron in 3 acquires the spin state of dot 1, as confirmed by the
absorption of a singlet state in a and the subsequent injection
of an electron from L.

individual capacitances C,C′, Cs and Cg of the NN, NS,
SS and gate junctions respectively (see Fig. 1a). The dots
are coupled to the N/S reservoirs with energy line widths
ΓL,R = 2πt2L1(R2)NL(R)(0) � ∆, with density of states
NL,R(0) (and similarly ΓSa = ΓSb). The chemical po-
tential µS of the superconductor is located in the mid-
dle of the left/right reservoir potentials µS ± eV/2. Dot
configurations are identified by the occupation numbers
of dots 1, a,2,b,3: 0 or 1 (0, 1 or 2) for the N-dots (S-
dots). Charging energy differences ∆Ef

i between the ini-
tial and final configurations of the five dot system enter
the O(Ht)2 calculation of the pair tunneling amplitude
from b to 2, 3 (and similarly from a to(1, 2)): Ab

P �
2

∑
k,x ub

kvb
kt2bt3b/(iη−Eb

k−∆E00x0x̄
00020 ), with η an infinites-

imal, uk, vk the usual BCS parameters, x = 0, 1(x̄ = 1, 0).
Ek is the quasiparticle energy involved in the creation of a
quasiparticle. The amplitude A

a(b)
P is at most comparable

to ΓSa,b, and decreases with the distance between the two
junctions involved in cross Andreev reflection [9,16]. The
transition amplitude AS between a(b) and the S-circuit is
calculated in a similar way [17]. Consider the system in the
absence of connections with the N,S leads. Dot gate volt-
ages are adjusted so that the 4 pair transitions Aa,b

P , Aa,b
S

are resonant. Discarding virtual processes with more than
one quasiparticle in a or b, one obtains the effective pair
Hamiltonian

Heff = Aa
P Ψ †

12Ψa + Ab
P Ψ †

23Ψb + AS(Ψ †
a + Ψ †

b )ΨS + h.c. (1)

where the Ψαβ destroys a singlet pair in 2 N-dots and Ψa,b,S
destroys a Cooper pair in the superconductors.

The TP sequence is now illustrated (Fig. 2) in a steady
state operation of the whole circuit (“TP cell”), by apply-
ing a constant bias between reservoirs L and R. Circuit
parameters and gate voltages are chosen such that the
TP cell is symmetric in changing 1 (a) into 3 (b), thus
Aa

P = Ab
P (no phase difference exists in the S part of the

cell). The whole TP sequence is depicted in Figure 2. It
repeats itself cycle after cycle, each one achieving telepor-
tation of an electron injected in 1 from L, and detection
in R of the teleported electron in 3. Start with dots 1, 3
and b occupied (upper right in Fig. 2). The teleportation
process is triggered by the escape of the electron in 3 in
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reservoir R. Doing so, the energy level in b is lowered, thus
interrupting the previously resonant Cooper pair trans-
fer. Now (lower right) the pair in b resonates with (2,3),
building with 1 the aforementioned state |Ψ〉123. Measure-
ment of the singlet state in (1,2) by a (Alice) is achieved
when a new electron is injected into 1, raising the energy
level in a in the process. The remaining electron in 3 thus
acquires the state of the previous one in 1, while the new
electron waits in 1 to be teleported in the next sequence.

Note that: i) Incoherent processes are brought by the
reservoirs and the applied bias. The latter bias also deter-
mines the direction of TP (right or left) in an otherwise
symmetric TP cell. This allows pair production from b and
pair measurement in a to be both irreversible. ii) Succes-
sive TP cycles are linked together in such a way that a
detection event triggers pair production for the next cy-
cle, and an injection event triggers pair measurement for
the previous cycle. iii) The classical channel corresponds
to the detection of an extra Cooper pair in the supercon-
ducting circuit (a + S + b). In Figure 1, this detection
is depicted by the presence of a detector DS , positioned
between a and S. The detection is classical insofar as
the change in Coulomb energy is irreversible due to the
reservoirs (it is triggered by the transfer of an electron
from L to 1) and it is computed from straightforward
classical electrostatics. It conveys the information about
the “charge” in quantum dot 1, while the (quantum) spin
part is reconstructed by the measurement, by means of
the entangled pair, in full agreement with the TP prin-
ciple [1]. v) As in optics [3,18,19], measurement of the
sole singlet state reduces to 1/4 the efficiency of TP, but
not the fidelity, equal to 1 in the ideal sequence depicted
above.

The sequence reads: ...10021] → [10020 ↔ 10101 ↔
02001] → [12001 ↔ 10001 ↔ 10021]... Close inspection of
the energy balance ∆Ef

i of all the electronic transitions
in the TP cell reveals that it is possible to force this se-
quence with the help of constant gate voltages only [15].
As an example, we assume that C = C′ = Cs = 100Cg.
First, the resonance condition for pair transitions implies
∆E10101

10020 = ∆E02001
10101 = ∆E10001

12001 = ∆E10021
10001 = 0. One

finds that it fixes N̄a,b = 0.97, and N̄1 + N̄2 = 0.67. Sec-
ond, injection and detection are ensured (with µL,R =
±eV/2) by ∆E12001

02001 < eV/2, ∆E10020
10021 < eV/2, there-

fore V > (N̄1 − 0.9)e/C. Third, the transfer of an elec-
tron from 3 to R is allowed from state 10021 but, among
other unwanted transitions, not from 10101 or 02001:
this can be achieved in a certain range of V because
∆E10100

10101 − ∆E10020
10021 = 2Ub3 − U23 = 11e2/30C > 0 and

∆E02000
02001 −∆E10020

10021 = U13 +2Ub3−2Ua3 = 13e2/30C > 0.
TP fidelity is reduced by other transport processes, yet

which are suppressed by our choice of resonant Cooper
pair transfers. First, a direct electron transfer can result
from two consecutive cotunneling transitions from dot 1
to dot 2, and from dot 2 to 3, while generating virtual
quasiparticles [16,20]. Cotunneling is avoided by maxi-
mizing the energy differences for transitions from dot 1
to dot 2, by tuning the parameter N̄1− N̄2. Positive (neg-
ative) gate voltages applied to dots 1, 3 (dot 2) guarantee

that cotunneling involves a positive energy 2ε (Fig. 1c),
with AP � ε < ∆. The amplitude for cotunneling from
dot 1 to 3 is reduced as it scales like A2

P /ε � AP . Co-
tunneling is quenched by maximizing ∆E02101

12001 , ∆E00121
10021 ,

∆E00101
10001 = (N̄1 − 8/15)e2/C ∼ 2ε. At T = 0, optimal

operation is obtained with N̄1 = N̄a ∼ 1, N̄2 ∼ −1/3 and
finite bias 0 < V < e/3C. A second process is Joseph-
son tunneling between a and b, independently of the pair
current involved in the TP sequence: Cooper pairs can be
transmitted by cotunneling through dot 2 only. However,
this process [9,21] involves quasiparticle excitations in a
or/and b, contrary to the TP process.

Assuming the TP cell to be weakly coupled to the
reservoirs, transport across the dot array can be described
by a master equation. The microscopic model shows that
the transfer process preserves spin, so let us first
take L, R polarized in the same direction. Defining states
| ↑, 2, 0, 0, ↑〉 = |a〉, | ↑, 0, 0, 0, ↑〉 = |c〉, | ↑, 0, 0, 2, ↑〉 = |b〉,
| ↑, 0, 0, 2, 0〉 = |1〉, | 0, 2, 0, 0, ↑〉 = |3〉, and |S〉, |T 〉 the
states |10101〉 with wave functions |ΨS〉12|σ〉3 and
(1/

√
3)

∑
ν |ΨTν 〉12|σ̃ν〉3, the Bloch equations for the

reduced density matrix, describing both the popula-
tions and the coherences σµν (µ, ν = a, b, c, 1, 2, 3) can
be written in the general form [22,23] at zero temperature:

σ̇µµ = i
∑

ν

Ωµν(σµν − σνµ) −
∑

λ

(Γµλσµµ − Γλµσλλ)

(2)

σ̇µν = i
∑

λ

(σµλΩνλ − σλνΩµλ) − σµν

2

∑

λ

(Γµλ + Γνλ)

(3)

with Ωac = Ωca = Ωbc = Ωcb = AS , the tunneling rate for
Cooper pairs from a to S (S to b). Ω1S = ΩS1 = −AP /2,
Ω1T = ΩT1 = −√

3AP /2, Ω3S = ΩS3 = AP , Γb1 = ΓR,
Γ3a = ΓL, all the other Ωµν ’s and Γµν ’s are zero. The
steady state TP current Itel = eΓRσbb (from L to R) is
obtained:

Itel = e
ΓLΓR

(Γ ′
L + 4ΓR)

A2
P

[A2
P + 2Γ 2

LΓR/(Γ ′
L + 4ΓR)]

(4)

with Γ ′
L = ΓL(3 + Γ 2

R/2A2
S). The above analysis does not

depend on the polarization of L as depicted in Figure 2, as
the two spin channels are totally decoupled. If L instead
feeds an arbitrary spin sequence to the TP cell, and R
has no polarization, each incoming spin is faithfully repro-
duced in R for each cycle, as the Bloch equations are iden-
tical for each spin direction. Aside from corrections due to
cotunneling, the only transport channel through the dot
array is the TP process. TP involves a spin-conserving
current between L and R, which is perfectly correlated to
a pair current IP = 2Itel in the S circuit. This signature
of the coupled quantum and classical channels allows to
distinguish TP from the parasite processes described pre-
viously: in cotunneling the pair current is absent; in the
Josephson process via 2, the normal current is missing.
Here, a teleportation diagnosis lies in the nonlocal trans-
fer of the injected electron spin from L into R, and in
the perfect locking of the average TP current which flows
between L and R with the average pair current in the S-
circuit. Yet if one measures average currents it does not
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constitute a rigorous proof. To be more precise, the finger-
print of TP is that each time an electron appears in R with
the same spin that was injected from L, a pair Cooper
pair passes from simultaneously from a to b. Quantum
mechanics confirms explicitly this perfect correlation of
electron and Cooper pair currents.

In similar situations, such as Bell inequality
tests [7,24], a diagnosis which measures correlations be-
tween particles independently of the chosen (classical or
quantum) description of the apparatus is necessary. In
fact, in the optics experiment [3], a coincidence measure-
ment is performed, which measures the simultaneous de-
tection of the Bell pair and the polarization of the tele-
ported photon, given a specific initial polarization. In
nanocircuits, counting single electrons or single Cooper
pairs in a transport experiment still represents a chal-
lenging task. Nevertheless, equal time correlators such as
the cross correlator 〈NS(t)(σz)R(t)〉 between the Cooper
pair number and the electron spin in R can readily be
expressed in terms of noise or current-current correlators∫

dωeiω〈IP (t)Itel(0)〉 (using a polarized reservoir R to de-
tect the spin), which are the standard quantities consid-
ered in the steady state [11]. An experimental test of the
device would require to monitor the electron current at
the point of injection and detection, and the Cooper pair
current between a and S, and to resolve the time corre-
lations [8] between these two currents. In Figure 1b, such
detectors DL,R,S are sketched, and these could operate
using capacitive effects.

Finally, limiting factors are considered. First, it is cru-
cial to maintain spin coherence during the TP sequence
(on a time scale ∼ �/ΓR,L, which turns out to be “short”
in practice). This coherence can be destroyed by spin-
orbit coupling, or by exchange interactions with the other
electrons within the dot. Such spin-flip processes can be
minimized provided that the level spacing in the dots is
larger than the temperature and the resonance width of
the dots [10]: “empty” dot states of 1,2,3 should prefer-
ably have even filling Nµ. Second, the present scheme is
clearly optimized if Cooper pair transfer from the N-dots
pairs to each S-dots has an maximal amplitude AP . This
amplitude is strongly reduced by a geometrical factor in
2D and 3D [9,10,16]. On the other hand, the size of the
S-dots is large enough so that ECa(b) < ∆, thus precise
lithography bringing N-dot pairs close together (however
avoiding direct tunneling between N-dots) is required. The
use of 1D wires could possibly relax this constraint, also
extending (over microns) the spatial range of TP. [25].

Discussions with V. Bouchiat are gratefully acknowledged.
LEPES is under convention with UJF and INPG.
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